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Heterogeneous ice nucleation (HIN) on ionic surfaces is ubiquitous in a wide range of atmospheric aerosols and at
biological interfaces. Despite its great importance in cirrus cloud formation and cryopreservation of cells, organs,
and tissues, it remains unclear whether the ion-specific effect on ice nucleation exists. Benefiting from the fact that
ions at the polyelectrolyte brush (PB)/water interface can be reversibly exchanged, we report the effect of ions on
HIN on the PB surface, and we discover that the distinct efficiency of ions in tuning HIN follows the Hofmeister
series. Moreover, a large HIN temperature window of up to 7.8°C is demonstrated. By establishing a correlation
between the fraction of ice-like water molecules and the kinetics of structural transformation from liquid- to ice-
like water molecules at the PB/water interface with different counterions, we show that our molecular dynamics
simulation analysis is consistent with the experimental observation of the ion-specific effect on HIN.

INTRODUCTION

Ice formation is ubiquitous and crucial in many fields such as cryobiology,
geology, and climate science (1-4). It is believed that the molecular-level
understanding of ice formation is essential to predict the future of our
planet (5-7). Ions are often involved in the process of ice formation (8-12).
Early studies showed that the growth rate of ice in aqueous alkali halide
solutions is strongly dependent on the type of salts (8-10). It might be
due to the differential incorporation of ions in the ice crystals or selective
adsorption of ions at the ice/water interface (11, 12). Particular interests
have been focused on ice nucleation because it is the initial and rate-
limiting step for ice formation (3, 4, 13-15). Pruppacher and Neiburger
(16) and Pruppacher (17) studied the relationship between the super-
cooling and the structure of aqueous solutions with monovalent ions
and found that the nonequilibrium freezing point depression of a solution
varied with the type of salts and, for a particular salt, increased with the
salt concentration. Recently, Koop et al. (18) revealed that homogeneous
ice nucleation in an aqueous solution could be predicted by water activity.
Thermodynamic anomalies of water crystallization were investigated by
Moore and Molinero (19) and Hudait and Molinero (20), who found that
the fraction of four coordinated molecules in supercooled liquid water
controlled the ice nucleation rate. However, in real systems, ice nucleation
occurs more often on foreign surfaces, that is, through heterogeneous ice
nucleation (HIN). For example, Ehre et al. (2) and Belitzky et al. (21)
found that HIN on charged surfaces was affected by the interfacial water
structure, which was also dependent on the amount of surface charges.
Abbatt et al. (22) discovered that HIN on the surface of solid ammonium
sulfate aerosols was a pathway for the formation of cirrus cloud, which could
cover up to 30% of Earth’s atmosphere and greatly affect the global climate.
Therefore, it is highly desirable to investigate the effect of ions on HIN.
Although very few theoretical and experimental studies on the ion
specificity of HIN have been conducted, the ion-specific effects on the
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dynamics and structure of interfacial water and other related surface
phenomena have been studied for many years (18, 23-27). One pio-
neering study is the discovery of the Hofmeister series in which ions
are ranked according to their ability in salting out proteins from aque-
ous solutions (28). Note that the Hofmeister series of ions explains
many surface phenomena in chemistry and biology (29-32). Recent
reports have shown that counterions at various ionic surfaces control
the dynamics and structure of interfacial water (23, 33-35). Such ob-
servations lead to a reasonable speculation that counterions on solid
surfaces can affect HIN because the theoretical analysis shows that the
structure transformation in water determines HIN (33-35). Although
the prediction is reasonable, it remains an open question whether the
ion-specific effect exists for HIN on ionic surfaces.

Here, we investigate HIN on polyelectrolyte brush (PB) surfaces.
The PB consists of densely end-grafted polyelectrolyte chains, carrying
a large number of ionic groups, as shown in Fig. 1. The reversible ex-
change of counterions in the PB has been explored for a variety of ap-
plications, such as designing surfaces with tunable wettability and
friction (24, 36-38). Furthermore, the embedded counterions in the
PB can provide a unique microenvironment and have been used as
carriers for proteins and microreactors to fabricate nanoparticles with
high catalytic activity (39, 40). When a drop of pure liquid water is
placed atop the PB surface, a fraction of counterions will be released
from the PB due to the osmotic pressure, forming a diffusion layer of
counterions at the brush/water interface (13, 41). Therefore, the PB
surface provides an ideal platform for the investigation of the ion-
specific effect on ice nucleation atop ionic surfaces. We have found
that HIN can be tuned by exchanging the counterions of the PB,
and the distinct efficiency of ions in tuning HIN follows the Hofme-
ister series. Such phenomena can be well interpreted by the molecular
dynamics (MD) simulation analysis. The diffused counterions at the
brush/water interface can effectively regulate the dynamics and struc-
ture of interfacial water and thus determine the HIN process.

RESULTS

HIN of water drops on the PB surfaces with different counterions was
signified by a sudden change in opacity before and after freezing
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Fig. 1. lllustration of HIN on cationic and anionic PB surfaces with different counterions. Cationic poly[2-(methacryloyloxy)-ethyltrimethylammonium]
(PMETA) and anionic poly(3-sulfopropyl methacrylate) (PSPMA) brushes are used to study the effect of diffused counterions on tuning HIN. The counterions on
the PMETA and PSPMA brush surfaces can be successfully exchanged by immersing the brush surface into a solution containing expected counterions (fig. S1).

(Fig. 1 and fig. S2) (42). The freezing process of a water drop includes
ice nucleation and ice growth, with the former being the rate-limiting
step (19). Ice formation in the water drop started at the brush/water
interface, followed by the upward ice growth (Fig. 1 and fig. S3). Upon
the formation of ice nucleus, ice grew spontaneously, and the whole
drop turned into ice within 0.5 s.

As shown in Fig. 2A (1 to 3), the HIN temperature (Ty) on the
PMETA-I brush surface (0.05 chain/nm?) is —23.8°C, whereas it is
~26.4°C on exactly the same brush surface but with SO,*~ as the coun-
terion (fig. S4). Note that we can reversibly tune the Ty on the PB
surface through cycling the counterion exchange, as demonstrated
in Fig. 2B. Consecutively replacing I” with SO,>~ of the PMETA led
to a dropping of the Ty from —23.5 + 0.4°C to —26.5 + 0.3°C and vice
versa. Another significant advantage of the PB over many other
materials, such as surfactant micelles, is that its thickness and grafting
density can be easily controlled, which can lead to a much broader
range of Tyy. We then prepared a series of PMETA brush surfaces with
the grafting density (o) varied from 0.03 to 0.50 chain/nm?. The Ty of
water drops on PMETA-SO,4, PMETA-CI, and PMETA-I brush
surfaces with various grafting densities is shown in Fig. 2C. At each
given grafting density, the Ty increases in the same order as SO,>~ <
CI” <T". On the other hand, for the PB surfaces consisting of the same
type of counterion, the Ty increases with the grafting density. The Ty
is =26.5 + 0.3°C on the PMETA-SO, brush surface with a grafting den-
sity of 0.05 chain/nm” and is ~18.7 + 0.6°C on the PMETA-I brush surface
with a grafting density of 0.50 chain/nm? exhibiting a Ty window as
large as 7.8°C, as shown in Fig. 2C.

We next studied the ion-specific effect as a function of the brush
thickness. When the PMETA brush height is increased from 2 to 50 nm
(measured in air) at a fixed grafting density of 0.50 chain/nm?, the
differences among the Ty on the PMETA-SO,, PMETA-CI, and
PMETA-I surfaces are significantly amplified, whereas the order
remains the same, as shown in Fig. 2D. The absence of ion-specific
effect on PMETA brush surfaces with a low thickness of 2 nm was
also verified by investigations of HIN on the NMe;" -terminated
self-assembled monolayers (SAMs) with various counterions (fig. S6)
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(29). The absence of ion specificity in HIN should be related to
the low concentration of diffused ions at the interfaces, which
agrees with other ion-specific phenomena (29, 43). The influence
of the cooling rate (from 1.0 to 10.0°C/min) in the Ty was also
studied, and the trend of the ion-specific effect on HIN is the same,
as shown in fig. S7.

To have a more complete series of ions on tuning HIN, we inves-
tigated the HIN on the PMETA brush surfaces with a large variety of
counteranions, as shown in Fig. 3A. The Ty increases in the anion
sequence of SO,” < F < Ac < HPO,* < CI” < Br < SCN™ <
NO;™ < I', which matches well with the Hofmeister series. To further
consolidate the specific effect of anion on HIN, we studied the cor-
responding nucleation delay time (#p) at —20.0°C (details in Materials
and Methods), which varied from 5 to 6500 s with the change of
anjons, as shown in Fig. 3B. The decrease of #p is consistent with the
increase of Ty. Cation-specific effect on HIN was also studied on
poly(3-sulfopropyl methacrylate potassium) (PSPMA) brush surfaces
as well as SO;~ -terminated SAMs with different countercations for
comparison. The Ty of water droplets (Fig. 3C and fig. S8) on PSPMA
brush surfaces with different cations shows the order of Ca** < Mg** <
Gdm" < K" < Na" < Cs" < TMA" < Li* < NH,", which is further con-
firmed by the results of #, (Fig. 3D). The sequence of cations is roughly
in accordance with the previously proposed Hofmeister series in
affecting other properties (29). In contrast, we did not observe ion-
specific effect for HIN on SO;  -terminated SAM surfaces (fig. S9). In
general, the Hofmeister series is more pronounced in anions than in
cations (44). Thus, we elucidated the ion-specific effect for HIN on
model systems of PMETA brush surfaces with different counteranions.

The ion-specific effects on HIN do not explicitly correlate to the
change of the macroscopic properties of the PB, such as wettability,
viscoelasticity, roughness, or swelling/collapsing behavior, upon the
variation of counterions (more details in figs. S10 to S13). To gain
molecular-level insight into the ion specificity in tuning HIN, we per-
formed MD simulations to study the ion-specific effect on the struc-
ture and dynamics of interfacial water (in fig. S14) (19, 45). Three
halide counterions (F~, Cl', and I") were chosen as representatives
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Fig. 2. Ty on the PMETA brush surfaces. (A) Polarized optical microscopic images of water drops before (1) and after (3) freezing on PMETA-SO, and
PMETA-I brush surfaces (on the same wafer; in fig. S4). The PMETA-SO4 and PMETA-I brush surfaces exhibited distinct Ty. Scale bar, 200 um. (B) Reversible
switch of the Ty of water drops on the PMETA brush surfaces through the consecutive counterion exchange of I” and SO, (0.05 chain/nm?). (C and D)
The influence of grafting density (C) and thickness (D) (fixed grafting density of 0.50 chain/nm?) on the T, of PMETA-SO,, PMETA-C, and PMETA-| brush
surfaces. The measurements were carried out in a closed chamber with a relative humidity of 100%, and the samples were chilled from room temperature
to —50.0°C with a cooling rate of 2.0°C/min. All experimental results on the Ty, were based on more than 200 freezing events for each PMETA-SO,, PMETA-

Cl, and PMETA-I brush surfaces (in fig. S5).

in the Hofmeister series, in which CI” situates in the middle and F~
and I" belong to the two ends. The PMETA brush swells in water, and
its counterions can diffuse into the surrounding water [above the out-
ermost quaternary ammonium-positive (QA™) group]. The diffused
halide anions are defined as the ions at the brush/water interface that
are not in direct contact with any outmost QA" groups. As shown in
Fig. 4A, an important feature is that the concentrations of all three
counterions approach zero at about 15 A away from the outmost
QA" group (fig. S15). The numbers of the diffused counterions of
F, Cl', and I" at the brush/water interface differ significantly, and
the concentration of F~ is almost three times that of I". MD simula-
tions at different temperatures further confirmed this finding (fig.
S16). The electric fields at the brush/water interface (with the mag-
nitude of 100 to 1000 kV . cm™"), induced by the diffused counter-
anions, are shown in fig. S17. The intensity of the electric field
increases in the same order as the ionic concentration I" < CI” < F,
and both follow the Hofmeister series. However, the intensity of electric
field is far below the required value (~10,000 kV . cm™") for inducing
ice nucleation, and so plays a minor role in the observed HIN (21, 46).
To gain more insights into the underlying molecular mechanism of
this ion-specific effect on HIN, we calculated the dynamics and struc-
ture of the interfacial water (in MD method and fig. S18) (47). We
found that the fraction of ice-like water molecules (tetrahedrality
above 0.9; in MD method and Fig. 4B) typically increases in the order
of FF <ClI <T.
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The diffused counteranions at the brush/water interface also have a
profound ion-specific effect on the relaxation of OH bond orientation
and the formation rate of ice-like water molecules. The orientation of
interfacial water molecules relaxes in the order of F~ < CI” < I" be-
cause anions with high charge density (F~, in this case) tend to slave
the surrounding water molecules and slow down their rotational dy-
namics (in Fig. 4C). The reorientation of water molecules plays a cru-
cial role in the hydrogen bonding dynamics (48). The kinetics of
making and breaking hydrogen bonds of ice-like water molecules in
different PMET A-anion systems was also studied (see MD method
and Fig. 4, D and E). The formation of ice-like water molecules is
determined by the interplay between making rate constant (k) and
breaking rate constant (k") of ice-like water. The transformation of
water molecules from the liquid-like to the ice-like structure becomes
more difficult when their rotational dynamics slows down because the
neighboring water molecules need to adjust their positions and orien-
tations to form an ice-like structure. In contrast, the breaking rate con-
stants of ice-like water molecules (k") fluctuate slightly for all three
systems (inset of Fig. 4D).

DISCUSSION

Recently, Tielrooij et al. (26) reported that the effect of cations and
anions on water structure is nonadditive, exhibiting a long-range feature
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Fig. 3. Distinct efficiency of anions and cations in tuning HIN follows the Hofmeister series. (A and B) T (A) and tp (B) on the PMETA brush surfaces
with different counteranions follow the Hofmeister series. The brush grafting density is 0.50 chain/nm?, and the thickness is 50 nm. (C and D) Ty (C) and tp,
(D) of ice nucleation on PSPMA brushes with different countercations. The brush grafting density is 0.95 chain/nm?, and the thickness is 20 nm.

beyond the first hydration shell of ions. It was found that ions are not
independent species in aqueous solutions, and ion-ion interactions are
important. Collins (44) has proposed an empirical law of matching water
affinities (LMWA). According to the LMW A, the oppositely charged ions
tend to associate into compact ion pairs if their hydration free energies are
close to each other (27, 28, 44). In particular, both the specific long-range
electrostatic interactions between oppositely charged ions and the short-
range hydration of ion pairs may strongly affect the dynamics and
structure of the interfacial water.

We performed MD simulations to investigate the interactions be-
tween PMETA brushes and three representative counterions, F-, Cl’,
and I". Because of excluded volume effect and electrostatic repulsion
between the charged groups of the PB (36, 49), the PB chains are heav-
ily stretched in water. At the same time, the dissociation of QA halide
pairs occurs, and free halide ions diffuse to the brush/water interface,
forming a counterion-rich interfacial water layer. According to the
LMWA, the capability of F~, Cl', and I" to form compact ion pairs
with the QA" group increases because the charge density decreases in the
sequence of F~ > CI” > I" and the QA" ion has a low charge density.
Thus, the concentrations of diffused counterions at the water/brush
interfaces decrease in the order of F~ > CI” > I', which agrees well
with the simulation results. When the grafting density or the thickness
of the PB is higher, the electric field generated by the QA" groups is
also stronger, which imposes higher attractive potential to the counter-
ions and so prevents them from escaping into the brush/water
interface. This effect is more evident for the weakly hydrated ions
(here, I"), which prefer to stay inside the PB due to the LMWA
and so effectively amplify the difference, as shown in Fig. 2 (C and D).

He et al. Sci. Adv. 2016;2:1600345 3 June 2016

The orientational relaxation of interfacial water molecules decays
more slowly with the increase of the anion charge density, as shown
in Fig. 4C. Meanwhile, the hydrogen bond making rate of ice-like wa-
ter molecules increases in the order of F~ < CI” < I', whereas the
difference of the hydrogen bond breaking rate of ice-like water mole-
cules is minimal (see inset of Fig. 4D). Note that the hydrogen bond
making rate and the fraction of ice-like water molecules, which were
calculated through independent analysis from MD simulation (see MD
method), follow the same increment trend as a function of the distance
(within 15 A) from the brush/water interface. This is in agreement with
the classical relationship between the concentration and the rate con-
stant in a dynamic equilibrium state, Cice.tike water/ Ciquid-like water = K/K'.
We also compared the fraction and the making rate constant of ice-
like water molecules at the local brush/water interface with the same
concentration of counterions (see table S1). The results in Fig. 4 (B
and D) demonstrate the amplified ion-specific effect due to the in-
crease of counterion concentration in the Hofmeister order. Conse-
quently, the total numbers of ice-like water molecules on the
surface of PMETA-I and PMETA-CI are 8 and 6% higher than that
on the PMETA-F surface. Because the rate of ice formation is strongly
controlled by the fraction of ice-like water, HIN is more likely to occur
on the brush surface with a low charge density counterion (here,
PMETA-I) (19, 45). Also note that HIN is also influenced by the ef-
fective contact area between the water and the PB. For the PB with the
same thickness and grafting density but different counterions (F~, CI,
and I"), the effective contact area is almost the same (figs. S15 and
S18A). Therefore, the structure and dynamics of interfacial water
dominate HIN. In contrast, the effective contact area increases with
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the grafting densities and/or thicknesses of the PB, which leads to an
increased statistical probability of HIN. Consequently, the Ty in-
creases, as shown in Fig. 2 (C and D). In principle, one can consider
to characterize the HIN phenomenon by calculating the thermody-
namic properties, such as enthalpy, entropy, and heat capacity in MD
simulations. However, the complicated composition of the PB system
and the nonequilibrium feature of the ice nucleation process make
the interpretation of the results very difficult. Therefore, we will leave
this for later study.

To our knowledge, these results are the first to show that ion spec-
ificity in tuning HIN on ionic surfaces follows the Hofmeister series.
This finding not only shed new light on the ion-specific effect on ice
nucleation but can also stimulate future studies involving the design of
anti-icing material. The physical principle behind this work will further
motivate the ongoing interest in exploring the origins of Hofmeister
effects.

MATERIALS AND METHODS

Materials

Cationic PMETA and anionic PSPMA brushes were prepared on gold
surface, modified by either initiator or methyl-terminated monolayers.
The subsequent polymerizations were based on surface-initiated atom

He et al. Sci. Adv. 2016;2:1600345 3 June 2016

transfer radical polymerization (SI-ATRP) in a 2:1 (v/v) oxygen-free
water/methanol mixture. The samples were then washed with Milli-Q
water and dried under N, flow. The different grafting densities of
PMETA brushes were tuned by adjusting the mixing ratio of un-
reacted CH;-terminated functionalities and ATRP initiator. The
grafting density (o) is calculated by ¢ = Naphar,/M,, where N, is the
Avogadro number, gy, is the dry thickness of polymer measured by
ellipsometer, M, is the number average molecular weight, and p is
the density of PMETA (1.0 g/cm3 ) (50).

Counterions exchange

The CI” in PMETA and K' in PSPMA were exchanged by immersing
the brushes into 0.1 M solutions of target counterions for 60 min. The
samples were subsequently washed with Milli-Q water to remove excess
surface free salt. The completeness of ion exchange was further con-
firmed by x-ray photoelectron spectroscopy (XPS) (fig. S1). Replacing
the original CI” with I and SO, resulted in the appearance of new peaks
of binding energies at 6184 eV (I3d) and at 168.6 €V (S2p), whereas the
signal of CI” at 196.7 eV (Cl2p) disappeared. The absence of the signal of
Na" atom indicated that free salt inside the brushes has been removed.

Water freezing procedure

The Ty and tp, were measured by the homemade experimental apparatus
(fig. S2). The sample cell was composed of a rubber O-ring sandwiched
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between two cover glasses (42). The tp, of ice nucleation is defined as
the time interval between the time when the substrate reaches a target
temperature and the time when the ice nucleus appears. Water dro-
plets can be deposited at —20.0°C (target temperature) for several
hours without a noticeable water condensation or evaporation.

MD method

Sixteen (META),, polycation chains were homogeneously grafted
perpendicular to a Si(1 0 0) surface, leading to a grafting density of
0.69 chains/nm?. Counterions of F~, CI”, and I” (192) were added near
QA" groups to neutralize the system. Water molecules (18,551) were
also added to each system. The force fields and simulation details of
the brushes with different counterions are reported in the Supplemen-
tary Materials. The structural order parameter (tetrahedrality) of the in-
terfacial water was calculated by

3¢3 4 1.2
gi =1~ gzjzlzk:jﬂ ( COSYjj + g)

where i represents the central water molecule, j and k represent the four
nearest water molecules around water i, and yj; is the angle formed by
jik (51). We regard the water molecule with g = 1 to 0.9 as ice-like water
(q = 1 corresponds to a water in a perfect tetrahedral ice crystal), which
acts as the precursor of ice nucleus. The fraction of ice-like water (tetra-
hedrality above 0.9) in bulk water is about 14%. More simulation details
are presented in the Supplementary Materials.

Water dynamics can be noted by water orientational time correla-
tion functions (TCFs)

Cy(t) = < Pafuon(0) - pou(t)] >

where P, is the second-order Legendre polynomial and noy is the di-
rection vector of the OH bond of water molecules. Similar to the cal-
culation of the kinetics of hydrogen bonds in liquid water, we
computed the time constants of the formation of ice-like water mole-
cules (48). The function pt + to, ;) is defined as 1 if the water mol-
ecule i is ice-like (liquid-like) during the time from #, to ¢ + t,, and
within this interim, it does not transform into liquid-like (ice-like).
Otherwise, it is defined as 0. The TCF C(t) can be calculated from
the simulation data

C(t) = <pi(t+to,to) >/ <pi(to, to) >

It is assumed that C(f) decays exponentially as

C(t) = exp(—kt)

where k is the rate constant.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/6/e1600345/DC1

fig. S1. XPS spectra of PEMTA brushes with different counterions (50,27, CI~, and I) in the
regions of S2p, Cl2p, and 13d.

fig. S2. Homemade experimental apparatus used to detect the HIN on PB surfaces.

fig. 53. Freezing process of individual water droplets on PMETA-I brushes (0.05 chain/nm?) during
the temperature-jump experiment at a cooling rate of 2.0°C/min (detected by a high-speed camera).

He et al. Sci. Adv. 2016;2:1600345 3 June 2016

fig. S4. Preparation process of PMETA-SO, and PMETA-I brush surfaces divided by a gap of Si
on the same wafer.

fig. S5. Distribution of Ty, on PMETA brush surfaces (grafting density of 0.5 chain/nm? and
thickness of 50 nm) with different counterions (5042’, Cl7, and I").

fig. S6. HIN on cationic SAMs with different counteranions.

fig. S7. Influence of cooling rate (from 1.0 to 10.0°C/min) on the ice nucleation temperature of
PMETA-SO,, PMETA-Cl, and PMETA-I brush surfaces (grafting density of 0.5 chain/nm? and
thickness of 50 nm).

fig. S8. Distribution of T,; on PSPMA brush surfaces (grafting density of 0.9 chain/nm? and
thickness of 20 nm) with different counterions (Li* , Na*, and K*).

fig. S9. HIN on anioinc SAMs with different countercations.

fig. S10. Quartz crystal microbalance with dissipation monitoring results as a function of
different counteranions in the PMETA brushes.

fig. S11. Thickness of PMETA brushes with different counterions measured by spectroscopic
ellipsometer under aqueous solution.

fig. S12. Contact angle of PMETA brush surfaces with different counterions.

fig. S13. Surface morphology and roughness of PMETA brush.

fig. S14. MD simulation illustration of PB with counterions.

fig. S15. Distribution of outmost QA* headgroup of PMETA-F, PMETA-Cl, and PMETA-l at the
brush/water interface.

fig. S16. Concentration of the diffused counterions above the PMETA brush at 300 K.

fig. S17. Strength of the electric field of PMETA-F, PMETA-CI, and PMETA-I above the brush/
water interface.

fig. S18. Water density and ice-like water density of PMETA-F, PMETA-CI, and PMETA-I brushes.
table S1. The fraction of ice-like water molecules (tetrahedrality above 0.9), the ice-like water
making rate constant k, and the concentration of ice-like water at the brush/water interface
with the same concentration of counterion (0.25 M).

Experiment details

MD simulation details
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